
CODE GENERATION

When should we use it?
When should we avoid it?

THE PROBLEM

Many applications that use databases involve a
large amount of repetitious boilerplate code,
which users don't want to maintain and which
they'd prefer not to understand. To avoid this, we
have made use of code generators.

We also use code generators for other purposes...

EXAMPLES WE USE

D0 and CDF calibration database access
CDF writes a Java specification of database tables and
rows; code generator executes this to produce C++
classes the users see and the back-end code which
interacts with a variety of databases.

D0 does a query to Oracle to generate Python, which is
parsed to generate C++ structs and CORBA IDL for the
client, and Python access code for the server.

rootcint and d0cint for persistency

rootcint for dictionary for interactive use

Qt: GUI generator and MOC

MORE EXAMPLES WE USE

Java
GUI builders

RAD tools with servlet generators, beans generators,
etc.

SWIG and boost.python
Wrap existing C or C++ for use in another language

CORBA IDL

flex/bison generated parsers

EXAMPLES WE DO NOT USE

Rational Rose, or any other UML --> C++
generation

C++ RAD tools with application builders
Why do we use them for Java, but not C++ or Python?

QUESTIONS WE SHOULD ADDRESS

What classes of problems do code generators
solve well? What features should we look for to
know we should rule out code generation?

In a pure C++ environment, for what sort of
problem would code generation be clearly superior
to use of templates?

How can we design or choose code generation
systems to avoid the problems listed?

What additional benefits could we gain, that we
are not now enjoying?

WAYS TO CLASSIFY TOOLS

Input language

Output language

Developer interaction with output

User interaction with output

Level of abstraction of output

DESIGN PHILOSOPHIES

Token merging into a template
This is how the CDF code generation works

Jakarta struts does this, for generating dynamic web
content

Code generator with built-in mapping from input
specification to output code.

Interface Definition Language (IDL)
CORBA

SWIG

MORE DESIGN PHILOSOPHIES

General purpose language as input
boost.python

Mark-up of general purpose language as input
rootcint, d0cint

Qt MOC

Special-purpose language with embedded code
segments

flex/bison, lex/yacc

AND MORE!

Generation of code skeleton to be filled in by
developer

RAD tools

FOCUSING THE DISCUSSION

The applications in which code generation is used
cover a huge range.

We want to focus on a particular application
domain: persistency, including (and most
importantly) database access.

DIFFICULTIES ENCOUNTERED

Tight coupling between database tables and client
code, and everything in between

Code bloat

Synchronization of development for multiple back
ends, e.g. Oracle and MySQL

Representation and maintenance of template
(boilerplate) code.

Having C++ code produced by C++ or python or Java

Comprehending the code (understanding its purpose
and design)

QUESTIONS WE SHOULD ADDRESS

What classes of problems do code generators
solve well? What features should we look for to
know we should rule out code generation?

In a pure C++ environment, for what sort of
problem would code generation be clearly superior
to use of templates?

How can we design or choose code generation
systems to avoid the problems listed?

What additional benefits could we gain, that we
are not now enjoying?

